17 research outputs found

    BIOACTIVE POLY(BETA-AMINO ESTER) BIOMATERIALS FOR TREATMENT OF INFECTION AND OXIDATIVE STRESS

    Get PDF
    Polymers have deep roots as drug delivery tools, and are widely used in clinical to private settings. Currently, however, numerous traditional therapies exist which may be improved through use of polymeric biomaterials. Through our work with infectious and oxidative stress disease prevention and treatment, we aimed to develop application driven, enhanced therapies utilizing new classes of polymers synthesized in-house. Applying biodegradable poly(ÎČ-amino ester) (PBAE) polymers, covalent-addition of bioactive substrates to these PBAEs avoided certain pitfalls of free-loaded and non-degradable drug delivery systems. Further, through variation of polymer ingredients and conditions, we were able to tune degradation rates, release profiles, cellular toxicity, and material morphology. Using these fundamentals of covalent drug-addition into biodegradable polymers, we addressed two problems that exist with the treatment of patients with high-risk wound-sites, namely non-biodegradability that require second-surgeries, and free-loaded antibiotic systems where partially degraded materials fall below the minimum inhibitory concentration, allowing biofilm proliferation. Our in situ polymerizable, covalently-bound vancomycin hydrogel provided active antibiotic degradation products and drug release which closely followed the degradation rate over tunable periods. With applications of antioxidant delivery, we continued with this concept of covalent drug addition and modified a PBAE, utilizing a disulfide moiety to mimic redox processes which glutathione/glutathione disulfide performs. This material was found to not only be hydrolytically biodegradable, but tunable in reducibility through cleavage of the disulfide crosslinker, forming antioxidant groups of bound-thiols, similar to drugs currently used in radioprotective therapies. The differential cellular viability of degradation products containing disulfide or antioxidant thiol forms was profound, and the antioxidant form significantly aided cellular resistance to a superoxide attack, similar to that of a radiation injury. Pathophysiological oxidation in the form of radiation injury or oxidative stress based diseases are often region specific to the body and thus require specific targeting, and nanomaterials are widely researched to perform this. Utilizing a tertiary-amine base-catalyst, we were able to synthesize a high drug content (20-26 wt%) version of the disulfide PBAE previously unattainable. The reduced version of this material created a linear-chain polymer capable of single-emulsion nanoparticle formulation for use with intravenous antioxidant delivery applications instead of local

    Highly Thiolated Poly (Beta-Amino Ester) Nanoparticles for Acute Redox Applications

    Get PDF
    Disulfides are used extensively in reversible cross-linking because of the ease of reduction into click-reactive thiols. However, the free-radical scavenging properties upon reduction are often under-considered. The free thiols produced upon reduction of this disulfide material mimic the cellular reducing chemistry (glutathione) that serves as a buffer against acute oxidative stress. A nanoparticle formulation producing biologically relevant concentrations of thiols may not only provide ample chemical conjugation sites, but potentially be useful against severe acute oxidative stress exposure, such as in targeted radioprotection. In this work, we describe the synthesis and characterization of highly thiolated poly (ÎČ-amino ester) (PBAE) nanoparticles formed from the reduction of bulk disulfide cross-linked PBAE hydrogels. Degradation-tunable PBAE hydrogels were initially synthesized containing up to 26 wt % cystamine, which were reduced into soluble thiolated oligomers and formulated into nanoparticles upon single emulsion. These thiolated nanoparticles were size-stable in phosphate buffered saline consisting of up to 11.0 ± 1.1 mM (3.7 ± 0.3 mmol thiol/g, n = 3 M ± SD), which is an antioxidant concentration within the order of magnitude of cellular glutathione (1–10 mM)

    An Efficient Method of Modeling Material Properties Using a Thermal Diffusion Analogy: An Example Based on Craniofacial Bone

    Get PDF
    The ability to incorporate detailed geometry into finite element models has allowed researchers to investigate the influence of morphology on performance aspects of skeletal components. This advance has also allowed researchers to explore the effect of different material models, ranging from simple (e.g., isotropic) to complex (e.g., orthotropic), on the response of bone. However, bone's complicated geometry makes it difficult to incorporate complex material models into finite element models of bone. This difficulty is due to variation in the spatial orientation of material properties throughout bone. Our analysis addresses this problem by taking full advantage of a finite element program's ability to solve thermal-structural problems. Using a linear relationship between temperature and modulus, we seeded specific nodes of the finite element model with temperatures. We then used thermal diffusion to propagate the modulus throughout the finite element model. Finally, we solved for the mechanical response of the finite element model to the applied loads and constraints. We found that using the thermal diffusion analogy to control the modulus of bone throughout its structure provides a simple and effective method of spatially varying modulus. Results compare favorably against both experimental data and results from an FE model that incorporated a complex (orthotropic) material model. This method presented will allow researchers the ability to easily incorporate more material property data into their finite element models in an effort to improve the model's accuracy

    Modeling of negative Poisson’s ratio (auxetic) crystalline cellulose IÎČ

    Get PDF
    Energy minimizations for unstretched and stretched cellulose models using an all-atom empirical force field (Molecular Mechanics) have been performed to investigate the mechanism for auxetic (negative Poisson’s ratio) response in crystalline cellulose IÎČ from kraft cooked Norway spruce. An initial investigation to identify an appropriate force field led to a study of the structure and elastic constants from models employing the CVFF force field. Negative values of on-axis Poisson’s ratios nu31 and nu13 in the x1-x3 plane containing the chain direction (x3) were realized in energy minimizations employing a stress perpendicular to the hydrogen-bonded cellobiose sheets to simulate swelling in this direction due to the kraft cooking process. Energy minimizations of structural evolution due to stretching along the x3 chain direction of the ‘swollen’ (kraft cooked) model identified chain rotation about the chain axis combined with inextensible secondary bonds as the most likely mechanism for auxetic response

    Rough Fibrils Provide a Toughening Mechanism in Biological Fibers

    Get PDF
    Spider silk is a fascinating natural composite material. Its combination of strength and toughness is unrivalled in nature, and as a result, it has gained considerable interest from the medical, physics, and materials communities. Most of this attention has focused on the one to tens of nanometer scale: predominantly the primary (peptide sequences) and secondary (ÎČ sheets, helices, and amorphous domains) structure, with some insights into tertiary structure (the arrangement of these secondary structures) to describe the origins of the mechanical and biological performance. Starting with spider silk, and relating our findings to collagen fibrils, we describe toughening mechanisms at the hundreds of nanometer scale, namely, the fibril morphology and its consequences for mechanical behavior and the dissipation of energy. Under normal conditions, this morphology creates a nonslip fibril kinematics, restricting shearing between fibrils, yet allowing controlled local slipping under high shear stress, dissipating energy without bulk fracturing. This mechanism provides a relatively simple target for biomimicry and, thus, can potentially be used to increase fracture resistance in synthetic materials

    Highly Thiolated Poly (Beta-Amino Ester) Nanoparticles for Acute Redox Applications

    Get PDF
    Disulfides are used extensively in reversible cross-linking because of the ease of reduction into click-reactive thiols. However, the free-radical scavenging properties upon reduction are often under-considered. The free thiols produced upon reduction of this disulfide material mimic the cellular reducing chemistry (glutathione) that serves as a buffer against acute oxidative stress. A nanoparticle formulation producing biologically relevant concentrations of thiols may not only provide ample chemical conjugation sites, but potentially be useful against severe acute oxidative stress exposure, such as in targeted radioprotection. In this work, we describe the synthesis and characterization of highly thiolated poly (β-amino ester) (PBAE) nanoparticles formed from the reduction of bulk disulfide cross-linked PBAE hydrogels. Degradation-tunable PBAE hydrogels were initially synthesized containing up to 26 wt % cystamine, which were reduced into soluble thiolated oligomers and formulated into nanoparticles upon single emulsion. These thiolated nanoparticles were size-stable in phosphate buffered saline consisting of up to 11.0 ± 1.1 mM (3.7 ± 0.3 mmol thiol/g, n = 3 M ± SD), which is an antioxidant concentration within the order of magnitude of cellular glutathione (1–10 mM)

    Development of <sup>225</sup>Ac Production from Low Isotopic Dilution <sup>229</sup>Th

    No full text
    The promise of 225Ac targeted alpha therapies has been on the horizon for the last two decades. TerraPower Isotopes are uniquely suited to produce clinically relevant quantities of 225Ac through the decay of 229Th. Herein, a rapid processing scheme to isolate radionuclidic and radioisotopically pure 225Ac in good yield (98%) produced from 229Th that contains significant quantities of 228Th activity is described. The characterization of each step of the process is presented along with the detailed characterization of the resulting 225Ac isotopic starting material that will support the cancer research and development efforts
    corecore